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RadioHound Vision: A Sensor on Every Phone 

• Vision: Become the Waze (real-time traffic) of spectrum usage 

• Approach: Put a spectrum sensor on every phone and report data to 
central database 

• Method: Leverage processing and backhaul of phones and augment 
with wideband (25 MHz-6 GHz) sensor (e.g., MotoMod) 

• Sensor: Low-cost ($20) software defined radio and custom (RFIC-
based) RF front-end ($20) covering 25 MHz to 6 GHz 

• Prototype platform: Raspberry Pi as proxy for Mobile phone 
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https://www.motorola.com/us/moto-mods 



Web-based Graphical User Interface 

• All sensor data deposited in central repository 

• Web-application controls remote sensors and visualizes results 

• Allows the visualization of spectral estimations and waterfalls 

• Allows the production of heatmaps 
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Signal-processing  

for  

Tactical Distributed Spectrum Sensing 

“Scientists cannot produce results useful for warfare 
without understanding the operational environment” 



ARL/ND Vision: Tactical Distributed Sensing 

• Question: What is “Tactical Distributed Spectrum Sensing” 

• It is NOT asymptotic sensor networks (Nsensors << ∞) 

• It is NOT randomly distributed (clustered) 

• It IS congested and contested (not civilian) 

    Motivation: Can we take advantage of  

    the clustered nature of tactical sensing? 
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Tactical Distributed Spectrum Sensing 

•What if every soldier at the tactical edge had a spectrum 
sensor? 

•What should you do with these low-capability sensors? 
– Original vision was pervasive crowd-sourced spectrum usage mapping 

– Tactical: clustered sensors, high dynamic range environment 

Emitter 

Emitter 

Squad 1 

Squad 3 

Squad 4 

Squad 2 

Controller 

Mobile 1 

Representative scenario Sensor network 

Sensor node 
3” 

Raspberry 

Pi 

0.4-6  

GHz 

0.1-0.4  

GHz 

25-100 

MHz 

Custom RF 
Raspberry Pi stack 

MANET 

Squad 

Squad 

Squad 

Controller 



Clustered measurement constraints 

• Several sensors within a squad observe the same 
signal of interest 

• Each sensor contributes its own uncorrelated noise 

• Reasonable bandwidth exists within a squad* but 
bandwidth may be limited between squads 
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* Sufficient to share IQ samples 



“Should be able to combine sensor data” 

• Requirements: 
– Generate a power spectrum 
– No a priori knowledge of emitters necessary 
– Should extract information from a saturated receiver and maintain low-

noise performance 
– Does not require precise time-sync (~100µsec) or phase reference 
– Isolates high data rates within squad performing data reduction for data 

moving between squads 

 

 
Method Pros Cons 

Coherent-averaged 
FFTs 

- Noise floor reduces -10dB/decade 
 

Without time-sync and 
determinism, signals attenuated 

Power-averaged FFTs - Simple 
- Good initial response (prior to averaging) 
- Does not require precise time-sync 

Noise floor constant (variance of 
noise is reduced) 

Auto-correlation - Simple 
- Does not require precise time-sync 

Noise floor constant (variance of 
noise is reduced) 

Cross-correlation - Noise floor reduces -5dB/decade 
- Can aggregate >2 sensors to increase or 

signal quality 

Requires two independent 
sensors 



Cross-correlation Receiver 

• Model: Each sensor in the pair computes a Fourier transform, X(f), 
of a time signal, x(t)=s(t)+ncorr(t)+nuncorr(t) 

• Power average: average M power spectra from single sensor, |X1
2| 

• Cross-correlation: average M cross-power spectra, X1X2* 

• Metric: compare Spur-free dynamic range, SFDR=2/3(IIP3-Pnoise) 
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Compare power averaging and 
cross-correlation over M averages 

0 0 0 



Simulation Environment 

• Test signal:  

– -10 dBm sinusoid at 27.174487 MHz and  

– -10 dBm sinusoid at 17.146236 MHz with 50 percent random 
amplitude modulation 

• Model:  

– Channel: “coarse time-sync”,  

    delayed ≤Tsamp/2 

– Non-linearity (LNA): vout=vin-(8/3)vin
3 
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Measured Spectra and SFDR 
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• Two sensors, one un-attenuated, the other with 5 dB attenuation 

• Spectra computed for NFFT=1000 and compare M=1, 1000 

• Power-averaged plots use data from sensor 1 or 2, 
independently 

• Spur-free dynamic range, SFDR=2/3(IIP3-Pnoise) 
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Trends: Power-avg. FFTs vs. Cross-correlation 

• Sensor 1 has no atten. and 
sensor 2 has 20 dB atten. 

• Linearity: 
– Averaging does not effect 

IIP3, regardless of 
algorithms 

– Cross-correlation is average 
of two sensors 

• Noise:  
– Power averaged sensors 

maintain same noise power 
over averaging 

– Cross-correlation sensors 
start at same noise power 
but exhibit 5dB/decade 
reduction in noise power 

• SFDR:  
– xcorr SFDR at M=1 is 

(2/3)*(10dB ‒ -1dB)=7.3dB 
lower than power averaged 

– After ~2 decades 
(M=250), cross-
correlation SFDR is 
equal to power averaged 
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Best Processing Algorithm 

• The cross-over point where cross-correlation outperforms 
power-averaged FFTs is a function of attenuation 

• Roughly 10dB/decade trend 

Best algorithm is 
power-averaged FFT 

Best algorithm is 
cross-correlation 
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Combining multiple sensors 

• Combine multiple sets of sensors, 
s=[2,3,4,5], with 0 dB attenuation 

• Each pair of sensors is cross-
correlated (total: s-choose-2) 

• Combining sensors is an average 
with Meff sensors 

• Meff =(s-choose-2)=(1/2)s2-(1/2)s 

• Computational complexity 
increases with Meff 

Combining multiple sensors trades 
computational complexity for scan 

speed 
M (number of averages) 
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Combining Attenuated Sensors 

• Combine multiple sensors 
with various attenuations to 
balance linearity and noise 

• Still get benefit of Meff sensor 
combinations 

• But, by properly selecting 
attenuation within the squad 
SFDR at M=0 can be 
increased 

• Here increase is ~7dB and 
improves at the same slope 
 

All sensors 0 dB 
attenuation 

Sensors 1-5 have 
[0, 5, 10, 15, 15] 

dB atten. 

Combining multiple sensors 
and controlling attenuation 
achieves better initial SFDR 
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Xcorr Observations 
• Depending on attenuation of a front-end, power-averaging may be the best 

solution for combining multiple spectrum measurements 

PROS: 

• Cross-correlation is the only approach that offers improvement in noise 
(and therefore SFDR) so given enough time (averages) it will always be best 

• Multiple sensors can be combined (s-choose-2) to achieve significantly 
improved performance even for very few averages and thus provides a 
means for trading computational complexity for scan speed 

• If sensors are equipped with variable attenuators a global controller can 
optimize performance and speed by combining multiple sensors with 
various attenuations 

• Does not require precise time-sync (~100µsec) or phase reference for power 
measurements 

• Can extract information from a saturated receiver and maintain low-noise 
performance 

CONS: 
• Uses magnitude and phase of data (Not applicable for magnitude only 

systems) 
• Requires >=2 sensors 



Field tests June 26 
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Questions? 
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Dear Mr. Shaffer… 

If you make device, what will you do with it? 

Give it to everyone and monitor spectrum everywhere! 
 

What difference will it make (from a military 
perspective)? 

All soldiers will have increased EM situation awareness 
and, ideally, emitter geolocation 
 

Can we afford it? 

Definitely! 
 

Can we exploit the device? 

Yes, with intra-squad connectivity on the order of ad-hoc 
WiFi, and inter-squad connectivity of e.g., 1/10th of that 


